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Error Analysis for the Truncation of Multipole
Expansion of Vector Green’s Functions
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Abstract—One of the most important mathematical formulas in
fast multipole algorithms (FMA) is the addition theorem. In the nu-
merical implementation of the addition theorem, the infinite series
should be truncated. In this paper, the number of terms needed for
the scalar Green’s function is derived, and the error analysis for the
truncation error in the multipole expansion of the vector Green’s
functions is given. We have found that the error term in vector
Green’s functions is proportional to 1 . If the scalar Green’s
function is truncated at the -th term and the relative error is ,
then the relative error in the dyadic Green’s function is 4, if it is
truncated at the ( + 2)-th term. For the vector Green’s function
related to MFIE, the relative error is 2 if it is truncated at the
( + 1)-th term.

Index Terms—Error analysis, fast multipole algorithms (FMA),
vector Green’s functions.

I. INTRODUCTION

T HE recent advent of fast algorithms in computational
electromagnetics has permitted the solution of integral

equations with an unprecedented number of unknowns. This
is the consequence of the development of the fast multipole
algorithms (FMA) [1] and the dynamic multilevel fast mul-
tipole algorithms (MLFMA) [2]. Such algorithms allow a
matrix-vector multiplication to be performed in
operations or less for many scattering problems. Moreover, the
memory requirements of these methods are , or
almost matrix free. Using the fast matrix-vector multiplications
in an iterative solver, problems for integral equations involving
up to ten million unknowns have been solved recently [3]–[6].

One of the most important mathematical formulas in the FMA
is the addition theorem. In the numerical implementation of the
addition theorem, the infinite series should be truncated. The
error analysis for the truncation error in the scalar Green’s func-
tions has been done by many researchers [1], [3] and [7]–[10].
In this paper, the number of terms needed for the scalar Green’s
function is derived, and the error analysis for the truncation error
in the multipole expansion of the vector Green’s functions is
given.
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II. TRUNCATION ERROR INSCALAR GREEN’S FUNCTION

The addition theorem for the scalar Green’s function has the
form [1]

(1)

where and are for field and source
points, is a vector between two group centers,is the sum-
mation of two local vectors [7], and is a spherical
Bessel function of the first kind, is a spherical Hankel
function of the first kind, and is a Legendre polynomial.

The infinite series of (1) is truncated at theth term. The
leading error term is (for ).
Some researchers [1], [3] and [7]–[10] have given the semi-em-
pirical formula

(2)

where is dependent on the accuracy; for example,
gives the accuracy of 0.1 and results in accuracy.
Recently, Rokhlin derived a new formula for 2-D [11]

(3)

where is also dependent on the accuracy. The same formula
was used in calculating the Mie series [12] and the optimal sam-
pling of scattered fields [13]. For a given accuracy, we calculate
the true needed in (1), and then compare the truewith the
values given by (2) and (3). In Fig. 1, we plot the differences
between the approximatedand true for an accuracy .
It is found that is a good approximation for
up to 40. But is always a good approximation.

Let us derive as a function of the accuracy requirement. The
relative error in the truncated scalar Green’s function of (1) can
be written as

(4)

The error in each term of (4) is maximum whenand are
collinear [10]. Applying the large argument approximation of
the spherical Hankel function, we have

(5)
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Fig. 1. Differences between theL calculated usingkd + 5 ln(� + kd), or
kd + 6(kd) , and trueL for an accuracy10 .

where only the leading error term is kept. With large order and
argument, can be approximated as [14]

(6)

where , and . Let us
change the variable using

(7)

Since the spherical Bessel function decreases very fast when the
order is larger than the argument,is very small compared to

. So we have the approximations

(8)

The second factor in (8) is much smaller than the first factor
and hence dominates when the log of (8) is taken. Therefore,
we have

(9)

Finally, we have a more refined formula

(10)

where , which is very close to the number of digits
of accuracy, Int . Equation (10) is a very
good approximation. For varying from 1 to 500, varies from

to , the difference between the approximatedand
true is between and .

III. T RUNCATION ERROR IN THEVECTORGREEN’S FUNCTION

Applying the addition theorem (1) to the dyadic Green’s func-
tion, and expanding the spherical wave in plane waves yield [1],
[7]

(11)

where .
Expanding in Cartesian coordinates, we have

(12)

The error in (1) and (11) is maximum when and are
collinear [10]. To simplify our analysis, we assume that both

and are along the -axis and replace with . So
the components of the dyadic Green’s function in Cartesian
coordinates are given by

(13)

There are three nonzero diagonal components, too.is the
radial component and should not have the term. and

are the transverse components. To check the error term in
of (13), we use the expansion of a plane wave to spherical

waves , the translation
, the recurrence

relations for Legendre polynomials and , and
the asymptotic form of for large [14]. Then we
have

(14)

Using the orthogonality of Legendre polynomials, we find that
(no term) when . But when FMA

truncates the series at theth term, the leading order error term
in is . Similarly, the
leading order error term in and is found to be

. For
small is much larger than , and the second term is dom-
inant. So, if the scalar Green’s function is truncated at theth
term and the relative error is, then the relative error of the trans-
verse components of the dyadic Green’s function is approxi-
mately if it is truncated at the -th term. For the radial
component, the relative error normalized by the transverse com-
ponent is if it is truncated at the -th term. The relative
error normalized by itself is . Therefore, the relative error
of the dyadic Green’s function is .

The vector Green’s function for the magnetic field integral
equation (MFIE) is just the gradient of the scalar Green’s func-
tion

(15)
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Fig. 2. Relative truncation errors of the scalar Green’s function and vector
Green’s function for the MFIE[rg(R)] forD = Dẑ andd = 0:4�ẑ.

Fig. 3. Relative truncation errors of the scalar Green’s function, and the
transverse component of the dyadic Green’s function forD = Dẑ and
d = 0:4�ẑ.

Fig. 4. Relative truncation errors of the scalar Green’s function and the radial
component (normalized by the transverse component) of the dyadic Green’s
function forD = Dẑ andd = 0:4�ẑ.

Its FMA factorization can be written as [15]

(16)

Using the above analysis, we find that the leading error term in
is . So, the relative accuracy is

if it is truncated at the -th term.
In Fig. 2, we plot the relative truncation errors of the scalar

Green’s function and the vector Green’s function for the MFIE

. It is found that if the vector Green’s function retains
one more term than the scalar Green’s function, the truncation
error of the vector Green’s function is one half the error of the
scalar Green’s function. Corresponding to the above analysis,
the relative errors of the transverse and radial components of the
dyadic Green’s function are plotted in Figs. 3 and 4. The error
for the radial component is normalized by the transverse compo-
nent. If the dyadic Green’s function retains two more terms than
the scalar Green’s function, the radial component hasof the
error of the scalar Green’s function and the transverse compo-
nent has of the error, as indicated by the above analysis.

IV. CONCLUSION

If the number of digits of accuracy in the truncated
Green’s function is , the number of terms is given by

. We also analyze the truncation error
in the FMA expansion of the vector Green’s function. The error
term in the vector Green’s function is proportional to . If
the scalar Green’s function is truncated at theth term and the
relative error is , then the relative error in the dyadic Green’s
function is if it is truncated at the -th term. For the
vector Green’s function related to MFIE, the relative error is

if it is truncated at the -th term.
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