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Error Analysis for the Truncation of Multipole
Expansion of Vector Green’s Functions

Jiming Song Senior Member, IEEEBnd Weng Cho Chewrellow, IEEE

Abstract—One of the most important mathematical formulas in Il. TRUNCATION ERROR IN SCALAR GREEN S FUNCTION

fast multipole algorithms (FMA) is the addition theorem. In the nu- . , .
merical implementation of the addition theorem, the infinite series 1 e addition theorem for the scalar Green’s function has the

should be truncated. In this paper, the number of terms needed for form [1]

the scalar Green’s function is derived, and the error analysis for the

truncation error in the multipole expansion of the vector Green’s R) — e _
functions is given. We have found that the error term in vector 9(R) = kR~ kD 4+d|

Green’s functions is proportional to 1/R. If the scalar Green's I

function is truncated at the L-th term and the relative error is e, . . 1 5 A

then the relative error in the dyadic Green’s functionise/4, if itis ~ Z(_l)l(2l + 1)j’(kd)h§ )(kD)Pl(d D) (D)
truncated at the (L + 2)-th term. For the vector Green’s function =0

related to MFIE, the relative error is €/2 if it is truncated at the , , )
(L + 1)-th term. whereR = |r —r'| = |D +d|,r andr’ are for field and source

points,D is a vector between two group centedsis the sum-
mation of two local vectors [7], and < D, j;(z) is a spherical
Bessel function of the first kindpgl)(a:) is a spherical Hankel
function of the first kind, and’;,(z) is a Legendre polynomial.
I. INTRODUCTION The infinite series of (1) is truncated at tiigh term. The

HE recent advent of fast algorithms in computationdf@ding error term i82L + 3)jr41(kd)/ (kD) (for L > kd).
T electromagnetics has permitted the solution of integraPMe researchers [1], [3] and [7]-{10] have given the semi-em-
equations with an unprecedented number of unknowns. TRi&cal formula
is the consequence of the development of the fast multipole
algorithms (FMA) [1] and the dynamic multilevel fast mul-

tipole algorithms (MLFMA) [2]. Such algorithms allow ahereq is dependent on the accuracy; for exampie= 1
matrix-vector multiplication to be performed i@(Nlog V)  gives the accuracy of 0.1 ard = 5 results in10—¢ accuracy.

operations or less for many scattering problems. Moreover, tR@cently, Rokhlin derived a new formula for 2-D [11]
memory requirements of these methods &@Vlog V), or

almost matrix free. Using the fast matrix-vector multiplications L~ kd + B(kd)*/? 3

in an iterative solver, problems for integral equations involving

up to ten million unknowns have been solved recently [3]-[6]Wheres is also dependent on the accuracy. The same formula
One of the mostimportant mathematical formulas in the FMWas used in calculating the Mie series [12] and the optimal sam-

is the addition theorem. In the numerical implementation of tiding of scattered fields [13]. For a given accuracy, we calculate

addition theorem, the infinite series should be truncated. THie trueL needed in (1), and then compare the tiuwith the

error analysis for the truncation error in the scalar Green’s funi¢@lues given by (2) and (3). In Fig. 1, we plot the differences

tions has been done by many researchers [1], [3] and [7]-[LBEtween the approximatddand trueL for an accuracyl0—°.

In this paper, the number of terms needed for the scalar Greeli§ found thattd+5In(r + kd) is a good approximation fdrd

function is derived, and the error analysis for the truncation erdp to 40. Butkd + 6(kd)'/® is always a good approximation.

in the multipole expansion of the vector Green’s functions is Letus derives as afunction of the accuracy requirement. The
given. relative error in the truncated scalar Green’s function of (1) can

be written as

kR ik[D4d|

Index Terms—Error analysis, fast multipole algorithms (FMA),
vector Green’s functions.

L ~ kd + aln(r + kd) 2
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Differencta between Appr. L and True L WhereaL (D k

k) = (i/47) Yo {2+ DA (BD)P(D - ).
Expandingl — kk in Cartesian coordinates, we have
i

NI P TR = s . A . n
’ - - I— kk = (1 — sin? 6 cos® ¢) (&% + §7) + sin® 025
— sin? fsin ¢ cos (&7 + )

kd+5%In(kd+pi) ~—
Kd+6(Kd)A(1/3) -

— sin @ cos O sin ¢(§2 + 29). (12)

The error in (1) and (11) is maximum whdn} and d are

1200 collinear [10]. To simplify our analysis, we assume that both
kd D andd are along thez-axis and replaceos 8 with . So

the components of the dyadic Green’s function in Cartesian
coordinates are given by

-15

Fig. 1. Differences between the calculated using:d + 5In(w + kd), or
kd + 6(kd)/3, and trueL for an accuracyl0—°.

1
2 wckd
where only the leading error term is kept. With large order and Goe = 2”/_1 dr(1 — z”)ag(z)e
argument;ir 11 (kd) can be approximated as [14] Gy, = Guw = g(R) — G )2
Jr4(x) Goy=Gyp =G, =G =Gy, =G, =0.  (13)
1
~ m@f@’x)_@%m Ind[L+8/2+f(Lo)l /=) (6) There are three nonzero diagonal components,@g.is the
,T)x

radial component and should not have thé? term. &, and
G,y are the transverse components. To check the error term in
G, of (13), we use the expansion of a plane wave to spherical
waves[e ™k =3 " (2n +1)j,(kd)P,(z)], the translation

3 ap(z) = ifdr Y1, i(20 + DA (kD) P(x), the recurrence
L+5=2(1+9). (7)  relations for Legendre polynomials P;(«) andz2P;(x)], and

) _ ) the asymptotic form ohgl)(kD) for large kD [14]. Then we
Since the spherical Bessel function decreases very fast whengjge

order is larger than the argumentis very small compared to

wherez = kd, and f(L,z) = [(L + 3/2)% — 2%]*/2. Let us
change the variable using

. So we have the approximations GikD > L .1
o R i"(2n + 1)jn P,
5 Goore o S (20 1) (kd)Z/_lda: (@)
¢~ (26) "M/ A= (803, ®) n=0 1=0
{l-1 I+1D){1+2
. . . ><{ ( )[Pz(x)—Pz_Q(x)]Jr—( +2)
The second factor in (8) is much smaller than the first factor 20 -1 20143
and hence dominates when the log of (8) is taken. Therefore,
we have x[P(z) — Prya(z)] ¢ - (14)
5~ 1[3In(1/e) 2/3 13 log(1/¢) 2/3 ) Using the orthogonality of Legendre polynomials, we find that
T2 z - z ' G.. =0(no1/D ~ 1/Rterm) whenL — co. But when FMA
_ _ truncates the series at th¢h term, the leading order error term
Finally, we have a more refined formula inG..is(L(L+1))/(2L + 1)jr_1(kd)/(kD). Similarly, the
2/3 s leading order error term it¥,.,, andG, is found to be[(2L +
L~ kd + 1.8dy"” (kd)*/ (10)  3)jp41(kd) — (L(L + 1))/(2(2L +1))j1,_1(kd)]/(kD). For

smallkd, L is much larger thakd, and the second term is dom-
wheredy = log(1/¢), whichis very close to the number of digitsinant. So, if the scalar Green’s function is truncated atfttte
of accuracy, Intog(1/¢)+1.0—log(2)]. Equation (10) is avery term and the relative erroristhen the relative error of the trans-
good approximation. Fdtd varying from 1 to 500¢ varies from  verse components of the dyadic Green’s function is approxi-
10~ to 10~17, the difference between the approximafednd matelye /8 if it is truncated at théL -+ 2)-th term. For the radial
true L is between-1 and2. component, the relative error normalized by the transverse com-
ponentis:/4 if itis truncated at th¢ L+ 2)-th term. The relative
[ll. TRUNCATION ERROR IN THEVECTORGREEN S FUNCTION  error normalized by itself isRe/8. Therefore, the relative error

Applying the addition theorem (1) to the dyadic Green’s fun@' the dyadic Green’s function ig/4.

tion, and expanding the spherical wave in plane waves yield [1], 1€ Vector Green’s function for the magnetic field integral
[7] equation (MFIE) is just the gradient of the scalar Green'’s func-

tion

A

G(r,r') ~ / PRI~ kb dar(D-k) (1) Va(R) = kli — 1/(kR)|g(R)R. (15)
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seator L7 [Vg(R)]. Itis found that if the vector Green'’s function retains

y MEIE, Vedtor, L7 one more term than the scalar Green'’s function, the truncation
¢ error of the vector Green'’s function is one half the error of the
scalar Green'’s function. Corresponding to the above analysis,
the relative errors of the transverse and radial components of the
dyadic Green’s function are plotted in Figs. 3 and 4. The error
et for the radial component is normalized by the transverse compo-

% nent. If the dyadic Green’s function retains two more terms than
the scalar Green'’s function, the radial componentidsf the

error of the scalar Green’s function and the transverse compo-

10 o 100 1000 nent hadl /8 of the error, as indicated by the above analysis.

0.1 ¢

0.01 ¢

Relative Error

0.001 ¢

0.0001
1

Fig. 2. Relative truncation errors of the scalar Green’s function and vector IV. CONCLUSION
Green'’s function for the MFIEV g(R)] for D = D2 andd = 0.4A2. o )
If the number of digits of accuracy in the truncated

Green’s function isdy, the number of terms is given by

1 Scalar, L=7 —— L = kd+1.8d2/*(kd)'/3. We also analyze the truncation error
i Transverse Component, Dyadic, L=7 -+--- . . s .
01k % Transverse Component, Dyadic, L=8 o~ | in the FMA expansion of the vector Green’s function. The error

%, Transverse Component, Dyadic, L= - . s . . .

5, term in the vector Green’s function is proportionalltoR. If
5 the scalar Green'’s function is truncated at ftth term and the
w00ty relative error is, then the relative error in the dyadic Green’s
> . . g uy w
g it e function ise/4 if it is truncated at thé L 4 2)-th term. For the
© 0001} 4 vector Green'’s function related to MFIE, the relative error is

/2 if it is truncated at thé L + 1)-th term.
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